Estimates for Solutions of the ∂̄ -equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type

نویسندگان

  • PHILIPPE CHARPENTIER
  • YVES DUPAIN
چکیده

ABSTRACT. In the late ten years, the resolution of the equation ∂̄u= f with sharp estimates has been intensively studied for convex domains of finite type in C by many authors. Generally they used kernels constructed with holomorphic support function satisfying “good” global estimates. In this paper, we consider the case of lineally convex domains. Unfortunately, the method used to obtain global estimates for the support function cannot be carried out in that case. Then we use a kernel that does not gives directly a solution of the ∂̄ -equation but only a representation formula which allows us to end the resolution of the equation using Kohn’s L2 theory. As an application we give the characterization of the zero sets of the functions of the Nevanlinna class for lineally convex domains of finite type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prescribing Zeros of Functions in the Nevanlinna Class on Weakly Pseudo-convex Domains in C2

Let D be a bounded weakly pseudo-convex domain in C2 of uniform strict type. For any positive divisor M of D with finite area, there exists a holomorphic function / in the Nevanlinna class such that M is the zero set of /. The proof is to study the solutions of 8 with Ll(dD) boundary values. 2 Let D be a bounded weakly pseudo-convex domain in C .In this paper we study the Poincaré-Lelong equati...

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

On Fejér Type Inequalities for (η1,η2)-Convex Functions

In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...

متن کامل

A Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations

In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...

متن کامل

Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013